Example			
$\frac{dy}{dx} + y = e^x, \ y(0) = 1$			
Step 1	Solve for y_h (the homogeneous solution)	$\frac{dy_h}{dx} + y_h = 0 \rightarrow (D+1)y_h = 0 \rightarrow$ $D = -1 \rightarrow y_h = c_1 e^{-x}$	
Step 2	Guess a solution to y_p (based on the right-hand side of the original D.E.)	$y_p = Ae^x$	
Step 3	Compare y_h to y_p . If and terms in y_p are the same as the terms in y_h , then multiply the "offending" terms in y_p by the in dependent variable	The terms in y_h and y_p are different, so do nothing.	
Step 4	Solve for A, B, C, by substituting y_p into the original D.E.	$\frac{dy_p}{dx} + y_p = Ae^x + Ae^x = e^x \rightarrow$ $2Ae^x = e^x \rightarrow 2A = 1 \rightarrow A = \frac{1}{2} \rightarrow$ $y_p = \frac{1}{2}e^x$	
Step 5	Combine y_h and y_p , i.e. $y = y_h + y_p$.	$y = c_1 e^{-x} + \frac{1}{2} e^x$	
Step 6	Solve of $c_1, c_2, c_3 \dots$ by appliying initial values	$y(0) = c_1 + \frac{1}{2} = 1 \to c_1 = \frac{1}{2} \to y = \frac{1}{2}e^{-x} + \frac{1}{2}e^{x}$	

Example $y'' + y = \sin(t), \ y(0) = 1, \ y'(0) = 0$			
Step 1	Solve for y_h (the homogeneous solution)	$y_h'' + y_h = 0 \rightarrow (D^2 + 1)y_h = 0 \rightarrow$ $D = \pm i \rightarrow y_h = c_1 \sin(t) + c_2 \cos(t)$	
Step 2	Guess a solution to y_p (based on the right-hand side of the original D.E.)	$y_p = A\sin(t) + B\cos(t)$	
Step 3 Step 4	Compare y_h to y_p . If and terms in y_p are the same as the terms in y_h , then multiply the "offending" terms in y_p by the in dependent variable Solve for A, B, C, by substituting y_p into the original D.E.	The terms in y_h and y_p are the same, therefore: $y_p = Atsin(t) + Btcos(t)$. $y'_p = Asin(t) + Btcos(t) + Bcos(t) - Btsin(t)$ $y''_p = Asin(t) + Atcos(t) + Bcos(t) - Btsin(t)$ $y''_p = 2Acos(t) - Atsin(t) - 2Bsin(t) - Btcos(t)$ $y''_p + y_p = 2Acos(t) - 2Bsin(t) = sin(t)$ $2A = 0$ and $-2B = 1 \rightarrow A = 0, B = -1/2$ $y_p = -\frac{1}{2}tcos(t)$	
Step 5	Combine y_h and y_p , i.e. $y = y_h + y_p$.	$y = c_1 \sin(t) + c_2 \cos(t) - \frac{1}{2}t\cos(t)$	
Step 6	Solve of $c_1, c_2, c_3 \dots$ by appliying initial values	$y(0) = c_{2} = 1 \rightarrow$ $y = c_{1}\sin(t) + \cos(t) - \frac{1}{2}t\cos(t) \rightarrow$ $y' = c_{1}\cos(t) - \sin(t) - \frac{1}{2}\cos(t) - \frac{1}{2}t\sin(t) \rightarrow$ $y'(0) = c_{1} - \frac{1}{2} - = 0 \rightarrow c_{1} = \frac{1}{2} \rightarrow$ $y = \frac{1}{2}\sin(t) + \cos(t) - \frac{1}{2}t\cos(t)$	