Example $d x$$+y=e^{x}, y(0)=1$		
Step 1	Solve for y_{h} (the homogeneous solution)	$\frac{d y_{h}}{d x}+y_{h}=0 \rightarrow(D+1) y_{h}=0 \rightarrow$ $D=-1 \rightarrow y_{h}=c_{1} e^{-x}$
Step 2	Guess a solution to y_{p} (based on the right-hand side of the original D.E.)	$y_{p}=A e^{x}$
Step 3	Compare y_{h} to y_{p}. If and terms in y_{p} are the same as the terms in y_{h}, then multiply the "offending" terms in y_{p} by the in dependent variable	The terms in y_{h} and y_{p} are different, so do nothing.
Step 4	Solve for A, B, C, ... by substituting y_{p} into the original D.E.	$\frac{d y_{p}}{d x}+y_{p}=A e^{x}+A e^{x}=e^{x} \rightarrow$ $2 A e^{x}=e^{x} \rightarrow 2 A=1 \rightarrow A=\frac{1}{2} \rightarrow$ $y_{p}=\frac{1}{2} e^{x}$
Step 5	Combine y_{h} and y_{p}, i.e. $y=y_{h}+y_{p}$.	$y=c_{1} e^{-x}+\frac{1}{2} e^{x}$
Step 6	Solve of $c_{1}, c_{2}, c_{3} \ldots$ by appliying initial values	$y(0)=c_{1}+\frac{1}{2}=1 \rightarrow c_{1}=\frac{1}{2} \rightarrow$
$y=\frac{1}{2} e^{-x}+\frac{1}{2} e^{x}$		

Example$y^{\prime \prime}+y=\sin (t), y(0)=1, y^{\prime}(0)=0$		
Step 1	Solve for y_{h} (the homogeneous solution)	$\begin{aligned} & y_{h}{ }^{\prime \prime}+y_{h}=0 \rightarrow\left(D^{2}+1\right) y_{h}=0 \rightarrow \\ & D= \pm i \rightarrow y_{h}=c_{1} \sin (t)+c_{2} \cos (t) \\ & \hline \end{aligned}$
Step 2	Guess a solution to y_{p} (based on the right-hand side of the original D.E.)	$y_{p}=A \sin (t)+B \cos (t)$
Step 3	Compare y_{h} to y_{p}. If and terms in y_{p} are the same as the terms in y_{h}, then multiply the "offending" terms in y_{p} by the in dependent variable	The terms in y_{h} and y_{p} are the same, therefore: $y_{p}=A t \sin (t)+B t \cos (t)$
Step 4	Solve for $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$ by substituting y_{p} into the original D.E.	$\begin{aligned} & y_{p}=A t \sin (t)+B t \cos (t) \\ & y_{p}^{\prime}=A \sin (t)+A t \cos (t)+B \cos (t)-B t \sin (t) \\ & y_{p}^{\prime \prime}=2 A \cos (t)-A t \sin (t)-2 B \sin (t)-B t \cos (t) \\ & y_{p}^{\prime \prime}+y_{p}=2 A \cos (t)-2 B \sin (t)=\sin (t) \\ & 2 A=0 \text { and }-2 B=1 \rightarrow A=0, B=-1 / 2 \\ & y_{p}=-\frac{1}{2} t \cos (t) \end{aligned}$
Step 5	Combine y_{h} and y_{p}, i.e. $y=y_{h}+y_{p} .$	$y=c_{1} \sin (t)+c_{2} \cos (t)-\frac{1}{2} t \cos (t)$
Step 6	Solve of $c_{1}, c_{2}, c_{3} \ldots$ by appliying initial values	$\begin{aligned} & y(0)=c_{2}=1 \rightarrow \\ & y=c_{1} \sin (t)+\cos (t)-\frac{1}{2} t \cos (t) \rightarrow \\ & y^{\prime}=c_{1} \cos (t)-\sin (t)-\frac{1}{2} \cos (t)-\frac{1}{2} t \sin (t) \rightarrow \\ & y^{\prime}(0)=c_{1}-\frac{1}{2}-=0 \rightarrow c_{1}=\frac{1}{2} \rightarrow \\ & y=\frac{1}{2} \sin (t)+\cos (t)-\frac{1}{2} t \cos (t) \end{aligned}$

