The Gaussian Differential Equation $\Rightarrow y'' + (1 - x^2)y = 0$

Express DE as a Power Series

This is a homogeneous 2nd order differential equation complicated by the non-constant coefficients. We will solve this using power series technique. Assume the solution to the differential equation:

$$y = \sum_{n=0}^{\infty} c_n x^n \longrightarrow y' = \sum_{n=1}^{\infty} c_n n x^{n-1} \longrightarrow y'' = \sum_{n=2}^{\infty} c_n n (n-1) x^{n-2}.$$

Therefore the differential equation can be rewritten as:

$$\sum_{n=2}^{\infty} c_n n(n-1) x^{n-2} + \sum_{n=0}^{\infty} c_n x^n - \sum_{n=0}^{\infty} c_n x^{n+2} = 0.$$

Shift Indices to Combine Summation Terms

In the first summation let k=n-2 (which implies that n=k+2):

$$\sum_{n=2}^{\infty} c_n n(n-1) x^{n-2} \longrightarrow \sum_{k=0}^{\infty} c_{k+2}(k+2)(k+1) x^k.$$

In the second summation let n=k. In the third summation let k=n+2 (which implies that n=k-2):

$$\sum_{n=0}^{\infty} c_n x^{n+2} \longrightarrow \sum_{k=2}^{\infty} c_{k-2} x^k.$$

The differential equation is now rewritten in terms of k:

$$\sum_{k=0}^{\infty} c_{k+2}(k+2)(k+1)x^k + \sum_{k=0}^{\infty} c_k x^k - \sum_{k=2}^{\infty} c_{k-2} x^k = 0.$$

We now strip of the first two terms of the first two summations:

$$2c_2 + 6c_3x + \sum_{k=2}^{\infty} c_{k+2}(k+2)(k+1)x^k + c_0 + c_1x + \sum_{k=2}^{\infty} c_kx^k - \sum_{k=2}^{\infty} c_{k-2}x^k = 0.$$

The terms are combined as follows:

$$(c_0 + 2c_2) + (c_1 + 6c_3)x + \sum_{k=2}^{\infty} [c_{k+2}(k+2)(k+1) + c_k - c_{k-2}]x^k = 0.$$

From this we can conclude:

$$\begin{split} c_0 + 2c_2 &= 0 \to c_2 = -\frac{1}{2}c_0, \\ c_1 + 6c_3 &= 0 \to c_3 = -\frac{1}{6}c_1, \\ c_{k+2}(k+2)(k+1) + c_k - c_{k-2} = 0 \to c_{k+2} = \frac{c_{k-2}-c_k}{(k+1)(k+2)} \text{ for k=2, 3, 4 ...} \end{split}$$

Now start with k=2 (since c_4 is the next term that we need):

$$\begin{aligned} \mathbf{k=2:} \ \ c_4 &= \frac{1}{12} (c_0 - c_2) = \frac{1}{12} \Big(c_0 + \frac{1}{2} c_0 \Big) \longrightarrow \boxed{c_4 = \frac{1}{8} c_{0,}} \\ \mathbf{k=3:} \ \ c_5 &= \frac{1}{20} (c_1 - c_3) = \frac{1}{20} \Big(c_1 + \frac{1}{6} c_1 \Big) \longrightarrow \boxed{c_5 = \frac{7}{120} c_{1,}} \\ \mathbf{k=4:} \ \ c_6 &= \frac{1}{30} (c_2 - c_4) = \frac{1}{30} \Big(-\frac{1}{2} c_0 - \frac{1}{8} c_0 \Big) \longrightarrow \boxed{c_6 = -\frac{1}{48} c_{0,}} \\ \mathbf{k=5:} \ \ c_7 &= \frac{1}{42} (c_3 - c_5) = \frac{1}{42} \Big(-\frac{1}{6} c_1 - \frac{7}{120} c_1 \Big) \longrightarrow \boxed{c_7 = -\frac{3}{560} c_{1,}} \\ etc \dots \end{aligned}$$

Therefore:

$$y \approx c_0 \left(1 - \frac{1}{2}x^2 + \frac{1}{8}x^4 - \frac{1}{48}x^6 \dots \right) + c_1 \left(x - \frac{1}{6}x^3 + \frac{7}{120}x^5 - \frac{3}{560}x^7 \dots \right)$$

Consider the special case where y(0)=1 and y'(0)=0. Note that:

$$y = \sum_{n=0}^{\infty} c_n x^n = c_0 + \sum_{n=1}^{\infty} c_n x^n \longrightarrow y(0) = c_0 = 1,$$

$$y' = \sum_{n=1}^{\infty} c_n n x^{n-1} = c_1 + \sum_{n=2}^{\infty} c_n n x^{n-1} \longrightarrow y'(0) = c_1 = 0.$$

Thus:

$$y \approx 1 - \frac{1}{2}x^2 + \frac{1}{8}x^4 - \frac{1}{48}x^6 \dots$$

Maclaurin Series Solution to e^x

If f(x) the Maclaurin series can be written as $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$. Thus:

$$f(x) = e^x \to f(0) = 1,$$

 $f'(x) = e^x \to f'(0) = 1,$
 $f''(x) = e^x \to f''(0) = 1,$
etc ...

Thus:

$$e^x \approx \frac{1}{0!}x^0 + \frac{1}{1!}x^1 + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 \dots \rightarrow e^x \approx 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 \dots$$

Maclaurin Series Solution to $e^{-x^2/2}$

To obtain a Maclaurin series for $e^{-x^2/2}$, use the result for e^x replacing x with $-x^2/2$:

$$e^{-x^2/2} \approx 1 + \left(\frac{-x^2}{2}\right) + \frac{1}{2}\left(\frac{-x^2}{2}\right)^2 + \frac{1}{6}\left(\frac{-x^2}{2}\right)^3 \dots \rightarrow e^{-x^2/2} \approx 1 - \frac{1}{2}x^2 + \frac{1}{8}x^4 - \frac{1}{48}x^6 \dots$$

This seems to match the power series solution for the differential equation $y'' + (1 - x^2)y = 0$ when y(0) = 1 and y'(0) = 0.

Note that the original differential equation was second order suggesting that there is a second solution. Recall:

$$y = c_0 \left(1 - \frac{1}{2}x^2 + \frac{1}{8}x^4 - \frac{1}{48}x^6 \dots \right) + c_1 \left(x - \frac{1}{6}x^3 + \frac{7}{120}x^5 - \frac{3}{560}x^7 \dots \right)$$

The **second polynomial** is the power series of the $\frac{1}{2}\sqrt{\pi}c_1e^{-x^2/2}\operatorname{erfi}(x)$, where $\operatorname{erfi}(x)$ is the imaginary error function. We will not show this, but merely state it existence for completion.

Homework:

- 1. Show that $y = e^{-x^2/2}$ is a solution to the differential equation $y'' + (1 x^2)y = 0$ and satisfies the initial values y(0)=1 and y'(0)=0.
- 2. What is the solution to the differential equation if y(0)=0 and y'(0)=1?
- 3. Add one additional term to each power series in the solution highlighted above