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The Quantum Harmonic Oscillator

fixed location

Classical Analysis

Recall the mass-spring system where we first introduced unforced harmonic motion.
The DE that describes the system is:

d?x

MF'FKX:O

where:

|
| restoring force F
4

x = displacement from equilibrium,

rest position

M = mass of the object,
K = spring constant.

Note that throughout this discussion the variables m and k will also be used where:
m = index for an mt"-order Hermite polynomial,
k = index for a power series summation.

The solution of this system is:

X = c{Sin —t |+ c,sin —t |
1 M z M

We define w to be the natural frequency of the system such that:
w= \/%x = ¢;sin(wt) + c,sin(wt)Note this means:

K = w*M

We will use this result shortly.




Quantum Analysis
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Thus far we have described the harmonic oscillator in classical sense. At this point we use the

Schrédinger equation to describe the system in quantum sense.

h? d*Y(x)
2M  dx?

+ VW) = EP(x),

where,

Recall:

h/2m  (reduced Plank’s constant)

S| St

Plank’s constant (describes size of quanta in quantum mechanics)

M | mass of particle

P(x) | time independent wave function

V(x) | potential energy of particle

E total energy of particle

We model the force on the particle using the classical idea of a spring system; hence the potential

energy V(x) is due to the spring’s restoring force F =- Kx and is given by:

1
V(x) = —dex = —f —Kxdx = Esz'
Since K = Mw?, potential energy is rewritten as:
1
V(x) = EMa)ZxZ.

The Schrodinger equation becomes:

R d2y 1 RZ d2ys
R S T 20200y = - T
oM dxz T MOV =E 2M dx?

Dividing through by the leading term yields:

d2y <2ME M2w?

dx2 \hz R x2>¢=0

Using Substitutions to Simplify the Equation
First let:

= — E=h 5
€ h(;)_) we

1
+ (E —Eszxz)Lp =0.
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The Schrédinger equation becomes:

dy <2Mwe B M?w? x2>1|1 — 0

dx? h h?

Now let:
Mw h
= X — = —_—.

Y h xox Ma)y
Thus:

d dydy [Mw dy to f b dy |Mw

ax dydx | R dy note from a ovedx— )

d*y d |Mwdy) de(dtj;)_ Mo d*ydy Mo d*y

dx? dy\J A dy| . A dy\dy/ | h dy?2dx & dy?
yielding:

Mw <2Ma)e Mw )
h h v

v

Dividing through by the leading term gives us:

U+ (2e = y)U = 0.

Solving the Simplified Equation using Gaussian and Hermite Differential Equations

The equation now resembles the Gaussian DE x”' + (1 — y?)x = 0 which has a solution e>*/2. One

plausible guess for the solution to the above equation is r = f(y)e‘yz/z. Thus:

V=10V = yf e 2 = (F ) = yf () /2
V= 0)eY 2 —yf (e V2 = f()e ™ 2 — yf (e 2 + y f (e 2 -

V= (£ 0) = 29F ) = FO) + y*f(3)) e /2
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Plugging this into the Schrédinger equation yields:

(f”(y) =2yf') - f») + yzf(y)) e /2 4 (2 —y2)f(y)e /2 =0,
which simplifies to:

(f"O) = 2yf' () + e = f()e™>*/2 = 0.
Dividing out the exponential yields:

'@ =2yf' M+ 2e=1Df(y) = 0.

Setting 26 — 1 = 2m generates:

") = 2yf'(y) +2mf(y) =0,

which is the Hermite differential equation. The solution of the DE is represented as a power series
Yo kY. Therefore the solution to the Schrédinger for the harmonic oscillator is:

V() = (Z cky"> e V2,

k=0

At this point we must consider the boundary conditions for 5. We know that V(x) = %mwzxz.

Therefore lim,_,;o, V(x) = oo, which implies that yi(+o) = 0. This can only be true if the polynomial
in the solution above truncates. Recall that in the power series solution to the Hermite DE the following
recursion relationship resulted:

B 2(k —m)
2T Dk + )N

Since k is a non-negative integer, it is necessary that m is a non-negative integer for the series to
truncate. Furthermore, our analysis of the Hermite DE showed that if m is an even integer, it is
necessary that y’(0)=0 for the series to truncate. Similarly, if m is odd, it is necessary that y(0)=0 for
truncation to occur. These conditions set up the Hermite polynomials H,,, (y), thus a given value of m:

Yy = CmHm(y)e_yz/z;

Mw

where ¢, is a constant. We now back substitute, recalling that previously we let y = - X

Therefore:
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Mw _Ma ;

Yy =cply, T-x e 2Zh

The wave function Y, is indexed indicating that the wave forms are different for different values of m.

Determining the Constant

The constant ¢, is determined by normalizing W, i.e.:

[ee)

W m(OI? = f [0 (0)]2dx = 1.

—00

This is necessarily true since |¥,,,(x)|? is a probability distribution function . Therefore:

© Mo Mo _, _M_a)zz Mo _,
C%f Hrzn Tx e R dx=1 Note:(e 2hx> —e R”

Using substitutions techniques from integral calculus let:

Mw q Ma)d q h d
= —_— e = —_— - —_—
u 7 X u 5 x — dx Mo u,

h (> *© Mw
c, /mf H2 (We “du = 1—>cn21f H2 (We “du = -

From our previous discussion of the orthogonality of Hermite polynomials, we know that:

thus:

f HZ (We " du = 2™m! V7,

and therefore:

Mw Mo\Y* 1
2 9Moy, | - - (—
cm2Mmly n —Cny (nh) i’

which gives us our final solution:
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B (Mw)l/“ 1 [ Mo Mo 2

. ,M .
By letting a = hw, we can rewrite Y,:

o\ 1 i
= — 2
Ym = — Nozm H,,(ax)e

Quantization of Energy

Recall that in the course of this derivation, the following substitutions were made:
E = hwe,
and:

1
2¢e—1=2m — 6=m+§,

therefore:
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Since m is a non-negative integer, then E,,, can only take on discrete values, i.e E,, is quantized. Each

energy level is associated with a specific wave function . Below is a table of the first 8 energy levels

and corresponding wave functions.

m| E, H,,(x) U

1 a a2x2
0 Ehw 1 <?> Hy(ax)e 2

3 (ZZ 1 a2x2
1| —hw 2x — —H 2

> ( - ) 7 1(ax)e

5 a? 1/4 1 aZx?
2 | —hw 4x?% -2 — —Hy(ax)e™ 2

7 AN a?x?
3 | —hw 8x3 —12x (a_) —Hz(ax)e 2

2 m) 43

9 2\ 1/4 2,2
4 | —ho 16x* — 48x2 + 12 (a_) LHLL(ax)e_a >

2 m) 86

11 2\ 1/4 2,2
5| =hw 32x° — 160x3 + 120x & ! H (ax)e_%

5

2 4 16V15

13 2 2,2
6 | 5 hw 64x° — 480x* + 720x% — 120 (a_) H (ax)e_a >

2 6

m) 96V5

15 2\ 1/4 2,2
7 | 5 ho | 128x7 — 1344x5 + 3360x3 — 1680x | [ L (@x)e™ 7

2 7

T 9670
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The wave functions and probablilty distribution functions are ploted below. Each plot has been shifted
upward so that it rests on its corresponding energy level. The parabola represents the potential energy

V(x) of the restoring force for a given displacement.

Harmonic Oscilator Wave Functions Probablity Distribution Functions
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Example: If a particle exists in the second energy level. What is the probability that the particle is found

intheintervall1 <ax <2->1/a <x < 2/a.

First determine what i, actually looks like:

a2 1/4 1 a?x?
vo=(%) setalae T -

2V/2
o2 1/4 1 , a?x?
=|— —(4x=—2)e 2
V2 (ﬂ) 2z )

Recall that Pr(1/a < x < 2/a) = fz/“

1/a |, |2dx. This equals:
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1 2

.I-Z/a <a2>1 1 ) a’x?
— ) —U@(ax)*—2)e” 2z | dx
1/a T 2\/2

d
Letu=ax—>du=adx—>dx=;u—>

1 2
2| (a?\* 1 w?| du
—) —(@u-2e 2| —
L[(”) 2\/5( ) a

2
a > du
= | (4uz —2)2e v =
LWT( e

1 2 2
= 4u? —2)2e Wy =
B?fl( )

Homework: What is the probability that the particle is found in the interval 2 < ax < 3 for a particle in
the m = 3 energy level?



