Particle in a Box (2 Dimensions)

The time independent Schrödinger equation for a particle equation moving in more than one dimension:

$$\frac{-\hbar^2}{2m} \nabla^2 \Psi(x,y) + V(x,y)\Psi(x,y) = E\Psi(x,y)$$

Where:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hbar</td>
<td>reduced Plank’s constant</td>
</tr>
<tr>
<td>\hbar</td>
<td>Plank’s constant (describes size of quanta in quantum mechanics)</td>
</tr>
<tr>
<td>m</td>
<td>mass of particle</td>
</tr>
<tr>
<td>∇^2</td>
<td>Laplacian operator ($= \frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2}$ in 2D rectangular coordinates)</td>
</tr>
<tr>
<td>Ψ</td>
<td>wave function (replaces the concept of trajectory in classical mechanics)</td>
</tr>
<tr>
<td>$V(x,y)$</td>
<td>potential energy of particle</td>
</tr>
<tr>
<td>E</td>
<td>total energy of particle</td>
</tr>
</tbody>
</table>

We expand the Laplacian and rewrite the equation as:

$$\frac{-\hbar^2}{2m} \left(\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} \right) + V(x,y)\Psi = E\Psi$$

For a particle in a two-dimensional box of length L and height H, the potential energy function is

$$V(x,y) = \begin{cases} 0 & 0 < x < L \text{ and } 0 < y < H \\ \infty & \text{elsewhere} \end{cases}$$

This implies that the particle can only exist inside the box where $V(x,y) = 0$. Using this fact and letting $k^2 = \frac{2mE}{\hbar^2}$ allows us to rewrite the equation:

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = -k^2 \Psi$$

The result is a homogeneous 2nd order partial differential equation (PDE) with constant coefficients. We use the separation of variables method to solve the above equation. Assume that the wave function $\Psi(x,y)$ is separable into two functions $X(x)$ and $Y(y)$, i.e. $\Psi(x,y) = X(x)Y(y)$ or, for brevity, $\Psi = XY$.

Therefore $\frac{\partial^2 \Psi}{\partial x^2} = X''Y$ and $\frac{\partial^2 \Psi}{\partial y^2} = YY''$. This allows us to rewrite the PDE as:

$$X''Y + XY'' = -k^2 XY$$

Dividing both sides by XY yields
The variables are separated by shifting the Y term to the right-hand side of the equation:

\[\frac{X''}{X} + \frac{Y''}{Y} = -k^2 \]

Since the variables have been fully separated, we can set both equations equal to the constant \(-\lambda^2\).

(Note: I use \(-\lambda^2\) vice \(-\lambda\) for convenience.)

We first solve for \(X\), i.e.:

\[\frac{X''}{X} = -\lambda^2 \quad \Rightarrow \quad X'' + \lambda^2 X = 0 \]

We know that the only non-trivial solution has the form:

\[X = c_1 \sin(\lambda x) + c_2 \cos(\lambda x) \]

Since the particle cannot be outside the box:

\[X(0) = c_1 \sin(0) + c_2 \cos(0) = 0 \quad \Rightarrow \quad c_2 = 0 \quad \Rightarrow \quad X(x) = c_1 \sin(\lambda x), \]

and:

\[X(L) = c_1 \sin(\lambda L) = 0 \quad \Rightarrow \quad \lambda L = n\pi \quad \Rightarrow \quad \lambda_n = \frac{n\pi}{L}, \]

where \(n\) is a positive integer. Therefore:

\[X_n(x) = c_n \sin\left(\frac{n\pi x}{L}\right). \]

We now turn our attention to \(Y\) and solve:

\[-\frac{Y''}{Y} - k^2 = -\lambda^2 \quad \Rightarrow \quad Y'' + (k^2 - \lambda^2)Y = 0. \]

Again, the only non-trivial solution is:

\[Y = c_3 \sin(\sqrt{k^2 - \lambda^2}y) + c_4 \cos(\sqrt{k^2 - \lambda^2}y). \]

As before, the particle cannot be outside the box:

\[Y(0) = c_3 \sin(0) + c_4 \cos(0) \quad \Rightarrow \quad c_4 = 0 \quad \Rightarrow \quad Y(y) = c_3 \sin(\sqrt{k^2 - \lambda^2}y), \]
and:

\[Y(H) = c_3 \sin \left(\sqrt{k^2 - \lambda^2} H \right) = 0 \quad \text{yields} \quad \sqrt{k^2 - \lambda^2} H = p\pi \quad \text{yields} \quad \sqrt{k^2 - \lambda^2} = \frac{p\pi}{H}, \]

where \(p \) is a positive integer. Therefore:

\[Y_p(y) = c_p \sin \left(\frac{p\pi y}{H} \right). \]

Since \(\Psi = XY \) we have:

\[\Psi_{np} = c_{np} \sin \left(\frac{n\pi x}{L} \right) \sin \left(\frac{p\pi y}{H} \right). \]

Note that \(c_{np} = c_n c_p \). Here the wave function \(\Psi_{np} \) varies with integer values of \(n \) and \(p \).

Since \(|\Psi_{np}(x, y)|^2 \) is the probability distribution function and since we know that the particle will be somewhere in the box, we know that \(|\Psi_{np}(x)|^2 = 1 \) for \(0 < x < L \) and \(0 < y < H \), i.e. there is a 100% probability that the particle is somewhere inside the box. Therefore:

\[c_{np}^2 \int_0^H \int_0^L \sin^2 \left(\frac{n\pi x}{L} \right) \sin^2 \left(\frac{p\pi y}{H} \right) dx dy = 1. \]

We can separate the integrals as follows (this is possible because the \(x \) and \(y \) variables are independent):

\[c_{np}^2 \left(\int_0^L \sin^2 \left(\frac{n\pi x}{L} \right) dx \right) \left(\int_0^H \sin^2 \left(\frac{p\pi y}{H} \right) dy \right) = 1, \]

which yields,

\[c_{np}^2 \left(\frac{L}{2} \right) \left(\frac{H}{2} \right) dy = 1 \quad \text{yields} \quad c_{np} = \frac{2}{\sqrt{LH}}. \]

Therefore:

\[\Psi_{np} = \frac{2}{\sqrt{LH}} \sin \left(\frac{n\pi x}{L} \right) \sin \left(\frac{p\pi y}{H} \right). \]
This is the solution to the wave equation for the particle in a two dimensional box.

We now turn our attention to the total energy. Recall:

\[k^2 = \frac{2mE}{\hbar^2} \text{ and } \hbar = \frac{\hbar}{2\pi}. \]

Since:

\[\sqrt{k^2 - \lambda^2} = \frac{p\pi}{H} \text{ and } \lambda = \frac{n\pi}{L} \implies k^2 = \left(\frac{n\pi}{L}\right)^2 + \left(\frac{p\pi}{H}\right)^2, \]

we get:

\[E = \left(\frac{n\pi}{L}\right)^2 + \left(\frac{p\pi}{H}\right)^2 \left(\frac{h^2}{4\pi^2}\right) \left(\frac{1}{2m}\right) \implies E = \frac{h^2}{8m} \left(\frac{n^2}{L^2} + \frac{p^2}{H^2}\right). \]

Note that this implies that the total energy for a particle is quantized.

The figures below depict wave functions and probability distribution functions for various values of \(n \) and \(p \). In each diagram \(L=1 \) and \(H=1 \).
Particle in a Box (2D)

$n=1, \ p=2$

$n=2, \ p=2$
Homework Questions:

1. (5 pts) Let \(L=1 \) and \(H=1 \). What is the wave equation for \(\Psi_{23} \)? What is the total energy of the particle with mass \(m \) that exists in the state \(\Psi_{23} \)?

2. (10 pts) Recall that \(|\Psi_{np}|^2 \) is a probability distribution function where:
 \[
 \Pr(a \leq x \leq b, c \leq y \leq d) = \int_c^d \int_a^b |\Psi_{np}|^2 \, dx \, dy.
 \]
 If \(L=3 \) and \(H=2 \), find \(\Pr(1 \leq x \leq 2, 1/2 \leq y \leq 3/2) \) for \(\Psi_{41} \).

3. (5 pts) Find an expression for the total energy of a particle in the state \(\Psi_{np} \) if
 \[
 V(x, y) = \begin{cases}
 a & 0 < x < 1 \text{ and } 0 < y < 1 \\
 \infty & \text{elsewhere}
 \end{cases}
 \]